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Frequency spectra of reactant fluctuations in 
turbulent flows 

BY GEORGE KOSALY 
Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA 

(Received 8 October 1991 and in revised form 8 July 1992) 

Bilger, Saetran & Krishnamoorthy (1991) give measured values of the variance, 
cross-correlation coefficient, autospectra, coherence and phase shift of the reactant 
concentration fluctuations for an irreversible second-order reaction in an in- 
compressible turbulent scalar mixing layer. The present paper approaches the 
interpretation of the measured data by evaluating the above quantities in the frozen 
(slow) and equilibrium (fast) chemistry limits. We assume that the limiting values 
bracket the corresponding intermediate rate data. 

The analysis leads to  values that correspond with the measured variances and 
correlation coefficients. The paper offers simple procedures for experimenters to 
evaluate the fast chemistry limit of the spectral characteristics from the measured 
mixture fraction fluctuations. The investigation of the limiting spectra suggests that, 
in the frequency region considered in the Bilger et al. measurements, the shape of the 
autospectrum is quite insensitive to the chemistry rate. The cross-spectrum is much 
more sensitive to the chemistry than the autospectrum. The analysis predicts 
correctly that the coherence decreases with increasing frequency while the phase 
stays equal to 7c until the decrease of the coherence leads to indeterminate phase 
results. 

1. Introduction 
The recent paper of Bilger, Saetran & Krishnamoorthy (1991, hereinafter referred 

to as BSK) investigates a reacting scalar mixing layer. Figure 1 shows a schematic 
of the experiment. Figure 2 shows the measured Eulerian time spectra (frequency 
spectra) of the reactant concentration fluctuations, and figure 3 shows the measured 
coherence and the phase between the reactant fluctuations. Figures 1, 2, and 3 are 
taken from BSK. The data published in BSK refer to  two different chemistry rates 
characterized by the Damkohler number based on the large scale (Da = 0.3, 1.8). 
Figures 2 and 3 refer to the Da = 0.3 case. For further details see BSK. 

The influence of first- and second-order isothermal reactions on the scalar spectra 
has been discussed by Corrsin (1961, 1964). Further discussion of the second-order 
case can be found in the review of Bilger (1980). The experimental spectral results of 
BSK shown in figures 2 and 3 refer to the middle of the flow (y = 0). The chemistry 
is A +B-tproducts with negligible heat release. The initial mole fractions of the 
reactants (r,,, rBz) differ by only 3%, and the stoichiometric value of the mixture 
fraction (J'J is close to 0.5. 

Since the present work is to be compared with the data of BSK, it is therefore 
assumed here that rAl = rB2 = r,, Fs = 0.5, and that the flow is incompressible. The 
theoretical results are applicable at the middle of a reacting mixing layer and to 
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FIGURE 1. Schematic diagram of the reacting mixing layer. (This figure is taken from BSK.) 
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FIGURE 2 .  Measured autospectra of the reacting species at the middle of a scalar mixing layer; 

x / M  = 21, Da = 0.3 (this figure is taken from BSK). 

mixing and reaction in homogeneous flow behind a grid (Bennani, Gence & Mathieu 
1985). 

No theory exists at  present that would satisfactorily predict the auto- and cross- 
spectra of the species concentration fluctuations for second-order reactions in 
turbulence (Corrsin 1961, 1969; Bilger 1980). In  BSK the finite chemistry data are 
explained by bracketing them with the respective frozen and fast (equilibrium) 
chemistry limits. However, since the equilibrium limit of the reactant spectra is not 
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FIGURE 3. Measured coherence and phase at  the middle of a scalar mixing layer; x/M = 21, 
Da = 0.3 (this figure is taken from BSK). 

available in the literature, the spectral data shown in figures 2 and 3 remained 
unexplained in BSK. 

The main goal of this work is to derive results that help understand the behaviour 
seen in figures 2 and 3, and to suggest new measurements to  test some of the 
conclusions. We develop predictions in the frozen and in the equilibrium chemistry 
limits that correspond with the experimental results using the spectra of a conserved 
scalar (mixture fraction) and its absolute value. The analysis corresponds with the 
measured variances and correlation coefficients. The discussion suggests that, in the 
frequency region considered in the BSK measurements, the shape of the reactant 
autospectrum is quite insensitive to the Damkohler number. It is the cross-spectrum 
(coherence and phase) of the concentration fluctuation of the two reactants that is 
sensitive to the chemistry. While the coherence is predicted t o  decrease with 
frequency more rapidly with increasing reaction rate, the phase shift is expected to  
be equal to 7c for arbitrary Damkohler number. 

Section 2 refers to an arbitrary chemistry rate. Sections 3 and 4 discuss the limiting 
cases of frozen (slow) and equilibrium (fast) chemistry. It turns out that the limiting 
spectra are related in a rather simple way to the spectra of the mixture fraction 
fluctuations and the absolute value of the mixture fraction fluctuations. Seetion 5 
discusses these two mixture fraction spectra. Section 6 applies measured mixture 
fraction data to evaluate the limiting reactant spectra which are, in turn, compared 
to the data in figures 2 and 3. Section 7 summarizes the conclusions and discusscw 
possible further work. 

2. Arbitrary chemistry rate 

the equation 
Using standard notation (see BSK) the mole fractions of the reactants (ri) obey 
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becomes 
In the frozen (slow) chemistry limit we use the notation I't = c. Equation (1) 

p(r:) = 0, i = A,B. ( 2 )  

The reacting mixing layer is defined by the boundary conditions : 

r,(t, x = 0, y, 2 )  = rip, x = 0, y, 2 )  = (3a) 

17:h(i = A ,  B)  represents the influence of the chemistry on the concentrations. Using 
(l) ,  (2),  ( 3 a , b ) ,  and (7) it follows that 

=qrth) = -krAr,, 

r ;h( t ,  x: = 0, y, 2) = 0, i = A ,  B,  

whence r;h = r;h = rch. 
Combining (6), ( 7 ) ,  and (10) results in 

rA = rm>T+rch, r, = r o o ( i - q + r c h .  ( 1 1 )  

From now on we omit the ch subscript, and write r,, = r. 
Fluctuations are defined as 

Ti = Ti+yt, i = A,B,  r= F + y ,  F = F + f .  (12) 
- -  

The overbar denotes time average. Note again that r= r c h ,  r -  rch, y = Ych. 

Definition ( 7 )  means that r is negative or zero. 
From ( l l ) ,  (12) 

Y A  = r m f + y ,  Y B  = - r w f + Y '  (13) 

Equation (13) relates the fluctuations of the reactant concentrations to the 
fluctuation of the mixture fraction and a common fluctuating background due to 
chemistry. 
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The measured spectra are Eulerian time spectra. We define the auto- and cross- 
correlation functions of the reactant fluctuations as (Bendat & Piersol 1980) 

(The notation suppresses the dependence on x.) 

as 
The auto- and cross-power spectral densities are defined via a Fourier transform 

+m fa, 

S,(w,  y) = R((7, y) e-iwTd7, Xi, k ( w ,  y) = Ri,J7,  y) e-iWTd7. (15a, b )  

Since R i , k ( ~ , y )  is not necessarily an even function of 7 the cross-spectrum is a 
complex quantity. 

8. % k = I#,. 1 ,  k I e-%k (15c) 

defines the magnitude and the phase of the cross-spectrum (Bendat & Piersol 1980). 
The coherence between the concentration fluctuations of the reactants is defined as 

L 

(15d)  

The coherence measures the relationship between the two signals as a function of 

Owing to the symmetry of the situation (cf. figure 1 and (3) and ( 5 ) )  
frequency (Bendat & Piersol 1980). 

y) = R B ( 7 ,  -y) and R A , B ( 7 ,  y) = R E , A ( 7 ,  -y)- (16a, b )  

Since R B , A ( 7 ,  y)  = BA,B( -7,y) follows from the definition of the cross-correlation 
function (Papoulis 1984), (16b) can be rewritten as 

Equations (16a, c )  show that at  the centreline (y = 0) 

R A ( 7 )  R A , B ( 7 )  = R A , B ( - 7 ) ,  (17% b )  

= S , ( w )  and q5A,B(~d)  = O  or 71:. (18% b)  
whence 

The above results refer to y = 0 in the reacting mixing layer and are valid a t  any 
position in the homogeneous case. Equation (18b) follows from (15b, c)  and (17b). 
Indeed if the cross-correlation function is even in 7, the cross-spectrum becomes real. 
A real number can be positive or negative. ~ A , B ( w )  = 0 or 71: correspond to S,,,(o) > 0 
or S,,,(w) < 0. Note that (18a, b )  follow from the symmetry of the situation. For 
y + 0 the spectra of the two reactants are not equal and the phase can have values 
other than 0 or x. In  the spatially homogeneous case ( l8a ,  b)  are valid independently 
of the lateral position. 

The prediction (18b) mirrors the experimental finding shown in figure 3, which 
demonstrates that  = 71: for small frequencies where the coherence is high. This 
measured phase value is consistent with the prediction (18 b)  which, however, still 
allows that the phase be 71: or zero. To explain why the measured phase is equal to 71: 
we have to show that for low frequencies SA, < 0. We also have to demonstrate that 
the coherence decreases with frequency. The indeterminate nature of the ex- 
perimental phase needs no separate discussion since low coherence necessarily results 
in indeterminate phase (Bendat & Piersol 1980). The sign of the cross-spectrum and 
the behaviour of the coherence will be discussed in $54 and 6. 
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We conclude this section by expressing the auto- and cross-spectra by the spectra 
of the random processes f and y .  Equation (13) shows that y A  and yB depend linearly 
on f and y. Straightforward calculation leads to 

X,(W,Y) = f l y ( w , Y ) + r 2 , ~ f ( w , Y ) + r , ( ~ ~ f , y ( ~ , Y ) + c . c . ) ,  (19a) 

sB(w,  y) = 8 y ( w ,  y) +r: 8 f (w ,  y )  -rcoc8f ,  y(@> y) + c.c.), 

f l , & J , Y )  = s, (w,Y) - r~~f (w,Y)+~, ( f l f , , (w,Y) - -c .c . ) .  (19c) 

(19b) 

Here S,+y(w,y) is the cross-spectrum o f f  and y .  The notation suppresses the x- 
dependence. Complex conjugate is denoted by C.C. 

Since at  the middle of the flow (18a, b)  are valid, the third terms on the right-hand 
sides vanish resulting in 

# A ( @ )  = SB(0) = f l , ( ~ ) + r : f l f ( w ) ,  S,,,(W) = S Y ( w ) - r 2 , f l f ( ~ ) .  (20a, b )  

Equations (20a, b)  apply at the middle of a reacting mixing layer and to mixing 
and reaction in homogeneous flow behind a grid. $ A , B  = 0 or 7 ~ :  correspond to  fly(@) > 
r: Xf(o) or AS’,(O) < P, Sf(w).  

To aid further discussion we write the cross-spectrum as 

s,,,(o) = ~ ~ ( ~ ) - 2 r 5 ~ ~ ( 4 ,  

whence 8 A ,  B(o) / sA(w)  = 1-2r% 8 f ( w ) / f l A ( w ) .  (21) 

Let us denote by a tilde the auto-spectra normalized by the respective variances. 
Equations (20a)  and (21) read 

Note that f= = 0, therefore R f ( w )  and fiy(u) are the Fourier transforms of the 
respective autocorrelation coefficients of f and y .  (For the definition of the 
autocorrelation coefficient of a variable, see Tennekes & Lumley 1972.) 

Since the integral of the auto-spectrum for all frequencies is proportional to the 
variance, by integrating (20a) we obtain 

= T + r p .  (23) 

Equations (22a, b )  and (23) result in 

Figure 2 shows the 8 , ( w ) ,  X”,(W) data. The coherence and the phase (for data see 
figure 3) are determined by the right-hand-side of (24b). The coherence is equal to the 
square of the absolute value of the right-hand-side. The sign of the right-hand-side 
determines whether the phase is zero or x .  

A further quality of interest is the correlation coeficient between the reactant 
fluctuations : _ _ -  

RA,B(Y) = YAYB/(YiY:)’* (25a) 
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At the middle of the flow (y = 0) 
_ _ _  

R A . B  = Y A  YBIY~. 

3. The frozen chemistry limit 
I n  this limit y = 0 in (13), therefore 

( 2 5 b )  

(26q d )  

Equations (26c, d )  represent the frozen chemistry predictions relevant to  figures 2 
and 3. In  this limit the auto-spectrum of the reactant fluctuations is equal t o  the 
auto-spectrum of the fluctuations of the mixture fraction. Equation (26d)  predicts 
unit coherence and q 5 A , B ( ~ )  = rc. 

4. The equilibrium chemistry limit 
If F, = 0.5, then in the equilibrium chemistry limit (Bilger 1980) 

(27 a )  
IF-0.5 if F > 0.5 if F > 0.5 

1 0  if F < 0.5, 10.5-F if F < 0.5. 
r ~ = ~ ~ m  l o  r: = 2 r m  

Since a t  the middle of the flow F = 0.5, f = F-0.5 ,  leading to 

Pf([) is the probability density function (p.d.f.) of the random variable f (Bilger 
1980). 

whence, upon insertion into ( 2 5 b )  it follows that 

Sufficiently far from the inlet the p.d.f. off can be approximated by the norrnsl 
distribution. (See for example, the measured kurtosis values in figure 7 of BSK.) In 
this approximation 

Ifl = ( 2 / X ) i  p);, (30) 

(31) 
1 

l-7-C 
resulting in R:B = - = -0.47. 

This is the equilibrium chemistry prediction of the correhtion coefficient, We turn 
and &(w).  These quantities are needed to evaluate the now to the discussion of 

auto- and cross-spectra from (24a, b ) .  
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From (11) and (27a) it follows that 

( F - 1  i f F > 0 . 5  

'I -F if F < 0.5, 
r e  = rEh = r, 

whence with (27 b )  

ye = yth 3 re - re leads to 

From (30) and (34) 

P = TE,, = r, (lfl-t). 

ye  = r,(lfl -m. 
(33) 

(34) 

Since 7 = 0 we write the autocorrelation coefficient of ye as 

p ; ( ~ )  = R;(T)/?. (36) 

R;(r) is the autocorrelation function of the ye  variable. 
Using (34) in (36), straightforward calculation results in 

which is equivalent to 
&(u) = &u). 

The random process y is the fluctuation of the 'chemistry background ' defined in (7).  
(See also (13).) I n  the fast chemistry limit at the middle of a scalar mixing layer (and 
at  an arbitrary lateral position for the spatially homogeneous case), the normalized 
autospectrum of the y process is identical to the normalized autospectrum of the 
absolute value of the mixture fraction fluctuation. (In the rest of the paper the terms 
'f-process' and 'Ifl-process' respectively will be used.) Insertion of (35) and (38) into 
(24a, b)  results in 

The results refer to the middle of a scalar mixing layer, sufficiently far from the 
inlet so that a Gaussian p.d.f. shall be applicable. Note that in the homogeneous case 
the results are valid independently of the lateral position. 

To continue the derivation, gf(u) and glf , (w)  are needed. Once these spectra are 
known the autospectrum of the reactant fluctuations can be computed from (39a). 
The coherence and the phase between the reactant fluctuations are determined by 
the square of the absolute value and the sign of the right-hand side of (39b), 
respectively. 

5.  The spectra off and I f 1  
Equations (39a, b )  show that in order to predict the behaviour of the reactant 

spectra in the equilibrium limit, one has to know & ( w )  and fif(w). While it seems 
impossible to derive a closed-form expression linking Slfl ( w )  and gf (w) ,  the respective 
autocorrelation coefficients can be expressed in terms of the other. Thomas (1969) 
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FIGURE 4. plf,  vs. pr as given by (41). 

shows that if the f-process is stationary and normal, the autocorrelation function of 
I f 1  can be written as 

Insertion of (30) and (40) into (37) results in 

pf(7) is the autocorrelation coefficient of the mixture fraction fluctuation. From any 
known R f ( w )  spectrum pf(7) can be determined which, in turn, provides plf ,(T) through 
(41). Rlfr(w) is the Fourier transform of plf1(7). 

Figure 4 shows pI f l  versus p f  as calculated from (41). Let 6 and qf, be the integral 
timescales of the f and the If1 processes : 

(Tennekes bz Lumley 1972). Figure 4 shows that plf1(7) decreases with 7 faster than 
pf(7), therefore 

qf, < 5, (43 a )  

whence &(w = 0) < &(o = 0). (43 b)  

( f i f ( w  = 0) = 2 F  for any stationary process.) Since the area under any autospectrum 
normalized by its variance is equal to 7c (Papoulis 1984), it  follows from (43b) that 
#lfl(w) decreases with frequency more slowly than A ! ! ~ ( w ) ,  which means that the two 
autospectra have to cross at some frequency, with the spectrum of I f  1 extending to 
higher frequencies. 
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Figure 5 shows measured spectra (R. W. Bilger & L. V. Krishnamoorthy 1991, 
personal communication)) off and If I referring to the same axial ( x / N  = 21) and 
radial position (y = 0) as figures 2 and 3. The behaviour of the curves in figure 5 
mirrors the expectation deduced from (41). Note that it is quite natural that the 
f-signal contains higher frequencies than the Ifl-signal since : (i) any smooth zero- 
crossing off creates a sharp dip in If I ; (ii) any periodicity of frequency (r) in f shows 
up at  2w in I f  1. 

6. Discussion and comparison to data 
The data comparison given below is based on experimental results for the middle 

of a scalar mixing layer: x /M = 21, Da = 0.3. For more details see BSK. The 
theoretical results discussed in $93-5 are also applicable to mixing and reaction in a 
spatially homogeneous case. Unfortunately no spectral data are available for 
reacting homogeneous flow. 

The predictions given in $53 and 4 refer to  the frozen and the equilibrium 
chemistry limits. BSK discusses numerous cases when the two limiting cases bracket 
intermediate rate chemistry data. We will now use the results in $53-5 to  compare 
the variance, the correlation coefficient, the autospectra, and the coherence, of the 
concentration fluctuations of the reactants. Note that there is no mathematical proof 
that these quantities must be bracketed by their limiting values. We use this 
assumption as a physically plausible postulate (see BSK and Toor 1975). The phase 
shift of the cross-spectrum will be predicted to be equal to 'II: for arbitrary Damkohler 
number. 

Equations ( 2 3 ) ,  (Bcicc) ,  and (35)  show that the variance of the mole fraction 
fluctuations is 2(1- l/n) = 1.36 times higher in the fast chemistry limit than in the 
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FIGURE 6. The frozen and the equilibrium limits of‘ thc reactant autospectrum. The curves have 
been computed from (26c) and (39a)  using the figure 5 data. 

frozen chemistry case, resulting in a 17 % difference between the root mean squares. 
The prediction is confirmed by the data shown in figure 9 of BSK. 

Equations ( 2 6 b )  and (31) indicate that for intermediate rate chemistry -0.47 > 
RA,B > - 1.  (Here -0.47 is the fast chemistry limit, - 1 is the frozen value.) RA,B is 
the correlation coefficient of the reactant fluctuations at  the middle of the reaction 
layer. The experimental values of R A , B  given in BSK are -0 .8  and -0.6. These 
values refer to the middle of the flow at x,” = 21 and to  the respective Damkiihler 
number values of 0.30 and 1.81. The data clearly corroborate the prediction. Note 
that the above limiting values also bracket the finite rate chemistry results computed 
via the linear-eddy turbulent mixing model (Kerstein 1992). 

Equation (39a) gives the auto-spectrum in the equilibrium limit as the ‘weighted 
average’ of the auto-spectra off and I f ! .  From (39u) and figure 5 it is obvious that 
&(w = 0) < g f ( w  = 0);  therefore, the two spectra have to cross at some frequency. 
(Remember that the areas under both spectra are identical.) At high frequencies the 
reactant spectrum becomes larger than the mixture-fraction spectrum. This effect is 
due t o  the influence of the spatial width of the reaction region. Since this lengthscale 
is normally smaller than the large turbulence scales, it contributes to the spectrum 
at high wavenumber values, that is, at large frequencies. 

Figure 6 shows the autospectrum off and the equilibrium limit of the reactant 
autospectrum as computed from (39a) using the figure 5 data. While the reactant 
spectrum indeed extends to higher frequencies the effect appears to be quite small. 
Since the two curves in figure 6 are expected to bracket the finite chemistry spectra, 
it is concluded that in the frequency range considered in the BSK measurements the 
shape of the autospectrum is not sensitive to the chemistry rate. The influence of the 
chemistry is probably much stronger a t  higher frequencies that cannot be seen in 
the data. Figure 2 exhibits the measured normalized autospectra of the two reactants 
at Du = 0.3 as given in RSK. Comparison of figures 2 and 6 demonstrates that! at 



500 G. Kosaly 

around 10 Hz, where the frozen and equilibrium spectra start to differ, the figure 2 
reactant spectra follow the equilibrium line. The Da = 1.8 autospectra are mentioned 
in BSK but are not yet available. The present prediction is that  the Da = 0.3 and 1 .S 
autospectra will not differ significantly from each other. 

The conclusion that the reactant autospectrum does not differ significantly from 
the mixture fraction spectrum follows from (39a) and figure 5 .  Equation (39a) is 
valid a t  the middle of a scalar mixing layer and at any lateral position in the spatially 
homogeneous case behind a grid, provided that the sensor is sufficiently far from the 
inlet so that the p.d.f. off is normal. The difference between fif and A% depends also 
on the deviation between gf and gIf1 (figure 5 ) .  The frequencies where this deviation 
becomes large are probably well above the frequency region considered in the BSK 
measurements. 

The present discussion refers to  the frequency spectrum which can, however. be 
converted to the one-dimensional wavenumber spectrum for a mixing layer and can 
also he applied to determine the three-dimensional wavenumber spectrum for the 
spatially homogeneous case (Tennekes & Lumley 1972). In order to investigate 
further the sensitivity of the reactant autospectra to the Uamkiihler number, new 
data are needed both for the highly symmetrical cases discussed in $8 3 and 4 and for 
more general conditions. The laboratory study of spatially homogeneous cases 
appears to be especially important. The generalization of (39,) to morc complex 
situations is straightforward. * 

We turn now to the discussion of t h e  coherence and the phase. Since S,,,(w = 0) < 
A!?~(w = 0) (cf. $ 5 )  t h e  left-hand side of (39b) is smaller a t  zero frequency than 
1 - 2 /  1.36 = -0.47, which means that it is negative ; t>herefore the equilibrium 
prediction of the phase at w = 0 is n. Since filfl(w) decreases with frequency more 
slowly than Rf(o)), with increasing frequency the second term on the right-hand side 
of (39b) decreases, therefore the right-hand side of (39b) increases. Since 
S>,,(w)/S>(w) is negative at  zero frequency, its increase with frequency leads to the 
decrease o f  its absolute value. It follows that in the equilibrium limit the coherence 
between the reactant fluctuations decreases with increasing frequency. 

Theoretically the phase of the cross-spectrum remains 7t as long as S5,B(w)/ 
S:(w) < 0. (See the discussion after (18b) and (206).) I n  practice, however, the drop 
in the coherence will result in indeterminate phase (Bendat & Piersol 1980). Equation 
(39b) shows that after the coherence drops to zero, further decrease of the ratio on 
the right-hand side o f  (39b) may result in increasing coherence, and q 5 > , B ( ~ )  = 0. 
Since this effect does not show in the data, for the time being, we do not discuss 
this possibility further. 

The frozen line in figure 7 corresponds to  ( 2 6 d ) .  The equilibrium limit of the 
coherence was computed from (396) using the figure 5 data. Figure 7 demonstrates 
that the coherence between the two different reacting species depends quite 
sensitively on the reachion rate. The experimental values were taken from BSK and 
refer to theUa = 0.3 case. The data are bracketed by the two limits, as expected. The 
present prediction is that any Du > 0.3 data taken under the BSK conditions will fall 
between the equilibrium and the experimental curves shown in figure 7 .  The 
coherence curve corresponding to Dn = 1.8 has been mentioned in BSK but is not yet 
available. When available i t  will provide a sensitive test of the present approach. 
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7. Conclusions and further work 
It is a common approach in the interpretation of turbulent reacting flow 

experiments to evaluate the frozen and equilibrium limits of the respective quantities 
and apply the limits to explain the finite chemistry results. BSK and the classical 
paper of Toor (1975) demonstrate that discussion via the limits is a fruitful way to 
gain insight into the main trends in the data. 

The present work corroborates the variance and the correlation coefficient of the 
reactant fluctuations. More important than that are the results referring t o  the 
spectral characteristics. While in RSK the authors explain the rest of their finite 
chemistry data via limiting results, they could not follow this avenue regarding their 
spectral data since the equilibrium chemistry limit of the auto- and cross-spectra of 
the reactant concentration fluctuations was not available for application. 

The main analytic results of the present work are (39a,  b )  which provide simple 
relationships to evaluate the equilibrium spectra from the spectra o f f  (mixture 
fraction fluctuation) and I f \ .  While no theory exists at present that would 
satisfactorily predict reactant spectra, the evaluation of the spectrum of a passive 
scalar is a more standard task (Tennekes & Lumley 1972; Lesieur, Montmory & 
Chollet 1987). The spectrum off and I f 1  are related to each other through (41). 

R. W. Bilger & L. V. Krishnamoorthy (1991, personal communication) provided 
measured spectra off and I f 1  so that  (39a,  b)  could be applied for the interpretation 
of their results shown in figures 2 and 3. Using their data in conjunction with (26c) 
and (39a)  shows that the two limiting normalized reactant autospectra nearly 
coincide. The finding suggests that, in the frequency region considered in the BSK 
measurements, the shape a t  the reactant autospectrum is not sensitive to  the 
Damkohler number. The influence of the chemistry on the shape of the reactant 
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autospectrum is probably much stronger a t  higher frequencies that cannot be seen 
in the BSK data. This finding needs to be tested against further data. The coherence 
is found to decrease with increasing frequency and the phase is proved to bc equal 
to n until i t  becomes indeterminate due to small coherence. These conclusions are 
mathematical consequences of ( 3 9 b ) .  Using the data of Hilger & Krishnamoorthy 
(1991, personal communication) in (39b) resulted in the equilibrium curve shown in 
figure 7 .  Since the figure 7 experimental data refer to Da = 0.3, the prediction is that 
any Da > 0.3 result should fall between the Da = 0.3 data and the equilibrium 
prediction. Figure 7 demonstrates that in the frequency region considered, the cross- 
spectrum is more sensitive to the chemistry than the autospectrum. 

The theoretical considerat.ions in this paper refer to the middle of a reacting mixing 
layer and to arbitrary lateral position in the spatially homogeneous case. It is 
desirable that new measurements should be taken both in these highly symmetrical 
cases and under more general conditions. 

The author is indebted to R. W. Bilger and L. V. Krishnamoorthy for making 
unpublished data available. Special acknowledgement is made of the helpful 
comments on the manuscript by R. W. Rilger. Thanks are due to  tJ. A. Ritcey for 
drawing the author's attention to the valuable book of Thomas (1969). The work was 
jointly supported by NSF and AFOSR under NRF Contract No. ('TS-9021928. 
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